LES of Flow Past Cylinders and Airfoils

Ravi Samtaney¹

Collaborators: Wan Cheng^{1,2}
Wei Zhang^{1,} Wei Gao¹
Dale Pullin²

Mechanical Engineering, PSE Division
 King Abdullah University of Science & Technology
 Graduate Aerospace Laboratories
 California Institute of Technology

January 10, 2019 CPPG Seminar, PPPL

Outline

- Introduction
- Filtered NS Equations and SGS Model
- Wall-resolved large-eddy simulations (LES)
 - LES of flow past a cylinder
 - Smooth
 - Grooved
 - Rotating
- Wall modeled LES
 - Virtual wall boundary conditions
- WMLES of flow past airfoils
- Conclusion

DNS

Wall-resolved LES

Wall modeled LES or Hybrid RANS-LES

RANS

Discovery through simulation

NASA: Critical challenges in CFD ---- Separation

- NASA's 2014 Aerosciences: Top three challenges
 - Prediction of unsteady separated flows
 - Aero-plume interaction prediction
 - Aerothermal prediction

NASA CFD 2030 VISION

Direct Numerical Simulation (DNS) Large-Eddy Simulation (LES)

Re = 10k (Dimotakis et al. 1983)

Direct Numerical Simulation (DNS) Large-Eddy Simulation (LES)

Re = 10k (Dimotakis et al. 1983)

physical space: fine-scale fluctuations not resolved, their influence is modeled.

spectral space: resolved range, $k < k_c$ (cutoff wavenumber k_c), subgrid range $k > k_c$.

DNS

LES

LES for wall-bounded flows

(Falco 1977)

Head & Bandyopandhyay (1981)

Discovery through simulation

Filtered Navier-Stokes Equations

Apply filtering operation to incompressible Navier-Stokes equations

$$\frac{\partial \widetilde{u}_{i}}{\partial t} = 0$$

$$\frac{\partial \widetilde{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} (\widetilde{u_{i}}\widetilde{u_{j}}) = -\frac{\partial \widetilde{p}}{\partial x_{i}} + \nu \frac{\partial^{2} \widetilde{u}_{i}}{\partial x_{i}^{2}}$$

$$\frac{\partial \widetilde{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} (\widetilde{u_{i}}\widetilde{u_{j}}) = -\frac{\partial \widetilde{p}}{\partial x_{i}} - \frac{\partial}{\partial x_{i}} (\widetilde{u_{i}}\widetilde{u_{j}} - \widetilde{u_{i}}\widetilde{u_{j}}) + \nu \frac{\partial^{2} \widetilde{u_{i}}}{\partial x_{i}^{2}}$$

$$T_{ij}$$

$$\widetilde{u_{i}}\widetilde{u_{j}}(x, t) \equiv \int_{-\infty}^{\infty} \mathcal{G}(x' - x) u_{i}(x') u_{j}(x') dx' \neq \widetilde{u_{i}}\widetilde{u_{j}}$$

- T_{ij} ``unresolved stresses' must be modeled: this is the ``closure problem'
- This equation set is NOT closed
- Filtering process on NS equations is strictly formal: no particular filter is actually needed

Explicit SGS model: stretched-vortex model

- Structure-based approach
- Subgrid motion represented by nearly axisymmetric vortex tube within each cell
- Local solution of NS equations for stretched-spiral vortex
 - Lundgren (1982), Pullin & Lundgren (2001)
- Subgrid stress:

$$T_{ij} = (\delta_{ij} - e_i^{\nu} e_j^{\nu}) K$$
,

$$K = \int_{\kappa_c}^{\infty} E(k) dk = \frac{1}{2} \mathcal{K}'_0 \Gamma \left[-1/3, \kappa_c^2 \right], \mathcal{K}'_0 = \mathcal{K}_0 \epsilon^{2/3} \lambda_v^{2/3}$$

Discovery through simulation

Model parameters

Subgrid energy spectrum (Lundgren, 1982)

$$E(k) = \mathcal{K}_0 \epsilon^{2/3} k^{-5/3} \exp[-2k^2 \nu/(3|\tilde{a}|)]$$

$$\tilde{a} = \tilde{S}_{ij} e_i^v e_j^v, \qquad \tilde{S}_{ij} = \frac{1}{2} \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} \right)$$

 Parameters obtained from resolved-scale, second order velocity structurefunctions (Lesieur et al)

$$\mathcal{K}_0 \epsilon^{2/3} = \frac{\overline{\mathcal{F}_2}(\triangle)}{\triangle^{2/3} A}, \qquad A = 4 \int_0^{\pi} s^{-5/3} (1 - s^{-1} \sin s) ds \approx 1.90695$$

$$\overline{\mathcal{F}_{2}}(\triangle) = \frac{1}{6} \sum_{j=1}^{3} \left(\delta \tilde{u_{1}^{+}}^{2} + \delta \tilde{u_{2}^{+}}^{2} + \delta \tilde{u_{3}^{+}}^{2} + \delta \tilde{u_{1}^{-}}^{2} + \delta \tilde{u_{2}^{-}}^{2} + \delta \tilde{u_{3}^{-}}^{2} \right)_{j},$$

Motivation: Drag Crisis

"Tackling turbulence using Supercomputers" –Kim & Moin 1997

Golf ball trajectory

(https://www.golf-simulators.com/physics.htm)

Flow past a cylinder

- SC: Smooth Cylinder
- GC: Grooved Cylinder
- RC: Rotating Cylinder

SC: Background of Flow past a cylinder

Kravchenko & Moin, PoF, 2000

Drag crisis

Conventional explanation

- Turbulence location
 - Wake in subcritical
 - BL for supercritical
- Any other explanation?

SC: Drag Coefficient

- Drag coefficient results from experiments do not agree with each other
- Figure from Cantwell & Coles (1983,JFM): exp. Data from literature

SC: Drag Coefficient

SC: Sub-critical cases

• Passively using wall-model ODE gives best results when mesh is not fine enough

SC: Re=10⁵

Diagnosed via momentum conservation law

Diagnosed via velocity component

SC: Separation: sub-critical cases

SC: Separation: sub-critical cases

SC: Separation: sub-critical case *Re=10*⁵

SC: Re = 3.5×10^5

SC: Re = 8.5×10^5

- Coarse mesh: 2048 x 512 x 192
- Fine mesh: 8192x1024x256
- Agreement with Achenbach's experiments

• Pressure coefficient

SC: Separation, super-critical case $Re = 3.5x10^5$

SC: Separation, super-critical case *Re= 8.5x10*⁵

SC: Drag Coefficient

SC: Flow past a cylinder

Re=10⁴

Cheng, Pullin, Samtaney, Zhang & Gao, JFM, 2017

0.8

SC: Flow past a cylinder

- Instantaneous flow:
 - From Subcritical to supercritical
 The interaction between the shear layer induced by the primary separation and separation/reattachment bundles
- Mean flow
 - From Subcritical to supercritical
 The disappearance of secondary separation bubble and appearance of prior separation bubble
 - From supercritical to transcritical
 The disappearance of prior separation bubble

 Hypothesis: dynamic interaction between primary separation and the unsteady secondary separation could be a more general mechanism for drag crisis in bluff body flow.

GR: Experiments: from high Re to low Re

FIGURE 3. Drag coefficient of the single cylinder in cross flow at various surface roughness parameters k_s/d : \times , smooth; \triangle , 75×10^{-5} ; \bigcirc , 300×10^{-5} ; \bigcirc , 900×10^{-5} ; \bigcirc , 3000×10^{-5} .

Discovery through simulation

Wall resolved LES of a cylinder with non-smooth surface

GR: From experiment to grooved wall simulation

FIGURE 2. Roughness pattern.

Simulation setup

$$k = 32$$

$$\epsilon = 1/k$$

GR: Flow past a grooved cylinder

Cheng, Pullin, Samtaney, JFM, 2018

GR: Secondary separation bubble

Cheng, Pullin, Samtaney, JFM, 2018

GR: Secondary separation bubble

Cheng, Pullin, Samtaney, JFM, 2018

GR: Instantaneous isosurfaces of Q

GR:

 $Re_D = 3.9 \times 10^3$

GR:

 $Re_D = 1 \times 10^4$

 $Re_D = 2 \times 10^4$

GR: $Re_D = 5 \times 10^4$

Cylinder + Grooved cylinder

Cylinder flow

Hypothesis: drag crisis is due to dynamic interaction between primary separation with unsteady secondary separation.

- Mean flow: Secondary separation bubble
- Instantaneous: separatrices and diverging bundles with small-scale separation/reattachment cells

Grooved Cylinder flow

Confirm: drag crisis is also due to dynamic interaction between primary separation with unsteady secondary separation.

- Mean flow: Secondary separation bubble
- Instantaneous: separatrices and diverging bundles with small-scale separation/reattachment cells

Smooth Cylinder + Grooved cylinder

Smooth Cylinder flow

Hypothesis: drag crisis is due to dynamic interaction between primary separation with unsteady secondary separation.

- Mean flow: Secondary separation bubble
- Instantaneous: separatrices and diverging bundles with small-scale separation/reattachment cells
- The secondary separation bubble moves upstream continuously

Grooved Cylinder flow

Confirm: drag crisis is also due to dynamic interaction between primary separation with unsteady secondary separation.

- Mean flow: Secondary separation bubble
- Instantaneous: separatrices and diverging bundles with small-scale separation/reattachment cells
- The secondary separation bubble moves upstream discontinuously

Background of Flow past a rotating cylinder

RC: Flow past a rotating cylinder

Cheng, Pullin, Samtaney, JFM 2018

Lift Coefficient

 $\alpha^{0.6}$

0.8

0.4

0.2

Drag Coefficient

0.2

0.4

0.6

RC: Flow past a rotating cylinder

Cheng, Pullin, Samtaney, JFM 2018

RC: Flow past a rotating cylinder

Cheng, Pullin, Samtaney, JFM 2018

RC: turbulence observed at $\alpha = 1.0$

RC: No difference in turbulence across crisis

Cylinder + Grooved cylinder + Rotating cylinder

Cylinder flow

Hypothesis: dynamic interaction between unsteady separations could be a more general mechanism for drag crisis in bluff body flow.

- Grooved cylinder
- Dynamic interaction between unsteady separations is still important.
- Mean flow: still observe the secondary separation bubble and prior separation bubble
- Rotating cylinder
- No primary separation on bottom.
- Unsteady separation dominates the flow.

Geometric	Drag/lift crisis	Instantaneous skin friction lines	Flow Mechanism		
sketch	(Symbols: hollow for experiments, filled for LES)	(red line for primary separation, blue zone for unsteady secondary separation)	Interaction of separations	Turbulence effect	
Smooth cylinder	0.5 0.0 10 ³ 10 ⁴ Re _D 10 ⁵ 10 ⁶	y/D 0.8 0.6 0.4 0.2 0.0 0 60 120 180 θ 240 300 360	Yes	Yes	
Grooved cylinder	$C_{D}^{1.0}$ 0.5 0.0 10^{4} $Re_{D}^{10^{5}}$ 10^{6}	0.6 y/D 0.5 0.4 0.3 40 60 80 100 Θ 120 140	Yes	No	
Rotating cylinder	2.0 1.5 C _L 1.0 0.5 0.0 0.5 \(\alpha \)	y/D 0.8 0.6 0.4 0.2 0.0 0 60 120 180 θ 240 300 360	Yes	No	

LES for wall-bounded flows

Wall-modeled region

True wall

LES + wall model for high Re flow

Outer flow: LES with stretched-vortex SGS model

LES + wall model for high Re flow

FIGURE 1. Schematic showing the near-wall set-up: h_0 locates the lifted virtual wall, where boundary conditions are applied; h locates the input plane to the wall shear stress equation, (3.10); h_{ν} locates the outer edge of the viscous sublayer; e^{ν} is the alignment of SGS vortices in their respective regions.

Wall Model

Wall Model - Essential Idea

$$u, v, w, p \longrightarrow \widetilde{u}, \widetilde{v}, \widetilde{w}, \widetilde{p} \longrightarrow \langle u \rangle, \langle v \rangle, \langle w \rangle, \langle p \rangle$$

A general wall-parallel filter

wall-normal integration filter

Inner scaling combined with wall normal integration filter

$$\frac{\tilde{q}}{u_{\tau}} = F(z^{+}), \quad z^{+} \equiv \frac{z}{l^{+}} = \frac{zu_{\tau}}{\nu}. \qquad \Longrightarrow \qquad \frac{\partial \langle q \rangle}{\partial t} = \frac{\tilde{q}|_{h}}{2\eta_{0}} \frac{\partial \eta_{0}}{\partial t}.$$

In the original model, applying the wall parallel filter

$$\frac{\partial \tilde{u}}{\partial t} + \frac{\partial \widetilde{u}\widetilde{u}}{\partial x} + \frac{\partial \widetilde{u}\widetilde{v}}{\partial y} + \frac{\partial \widetilde{u}\widetilde{w}}{\partial z} = -\frac{\partial \tilde{p}}{\partial x} + \nu \frac{\partial^2 \tilde{u}}{\partial z^2},$$

Main points to note

Discovery through simulation

Classical inner scaling

Near wall integration approach

Wall Model

- ODE for wall shear stress (or u_{τ}) at every wall point $u_{\tau}^2 \equiv \nu \eta_0$ $\eta_0 \equiv \frac{\partial \widetilde{u}}{\partial z}\Big|_0$ Wall-normal integration of streamwise momentum equation
 - Top-hat filter normal to the wall, 0 < z < h: $h = \Delta z > h_0$
 - Local inner-scaling reduction for unsteady term

$$\frac{\partial \eta_0}{\partial t} = \frac{2\eta_0}{\widetilde{u}|_h} \left[-\frac{\partial \widetilde{uu}|_h}{\partial x} - \frac{\partial \widetilde{uv}|_h}{\partial y} - \frac{\partial \widetilde{uv}|_h}{\partial y} - \frac{\partial \widetilde{uv}|_h}{\partial x} \right|_h + \frac{\nu}{h} \left(\frac{\partial \widetilde{u}}{\partial z} \bigg|_h - \eta_0 \right) \right]$$

- Attached-eddy ansatz in overlap region (Townsend, 1976)
 - Hierarchy of streamwise ``attached" SGS vortices whose size scales with distance from wall
 - Extended stretched-vortex SGS model with attached-eddy assumption
 - SGS model gives log relationship for slip-velocity at lifted wall position z = h₀
 - ``Karman constant" calculated dynamically

$$\widetilde{u}|_{h_0} = u_{\tau} \left(\frac{1}{\mathcal{K}_1} \log \left(\frac{h_0 u_{\tau} / \nu}{h_{\nu}^+} \right) + h_{\nu}^+ \right) \qquad \mathcal{K}_1 = \frac{\gamma_{\text{II}} K^{1/2}}{2 \left(-T_{xz}|_{\boldsymbol{e}_{\widetilde{S}}} \right)^{1/2}}$$

Wall Model Development & Applications in LES

- LES of flat plate TBL: power law vs. log law
 - Cheng & Samtaney, Phys. Fluids 2014
- LES of separation/reattachment of flat plate TBL
 - Cheng, Pullin, Samtaney: JFM 2015

- LES of flow past an airfoil
 - Gao, Cheng, Zhang, Samtaney (JFM under review)

Flow past Airfoils

Numerical Setup

- Comparison between DNS and WMLES at Re=10⁴
- Comparison between WMLES and experiment at Re=10⁵, 2.1 x 10⁶

Airfoil NACA0012	Method DNS	-	AoA 5°	$N_{\xi} \times N_{\eta} \times N_{z}$ $2048 \times 256 \times 256$		$\Delta \eta_{max}^{+}$ 0.8	Δz_{max}^+ 8.8
NACA0012	WMLES	10^{4}	5°	$768 \times 96 \times 64$		14.2	38.4
NACA0018			5°	$1600 \times 128 \times 128$		15.8	65.8
A-Airfoil	WMLES	2.1×10^{6}	13.3°	$3200 \times 256 \times 256$	80.1	16.4	85.4

NACA0012, Re=10⁴, AOA=5

Time and spanwise averaged pressure coefficient and skin friction coefficient

Time and spanwise averaged streamwise velocity component and streamlines

NACA0018, Re=10⁵, AOA=5

Symbols: Expts of Kirk & Yarusevych (2017)

Mean velocity profiles x/c=0.52, 0.54, 0.6, 0.66, 0.73, 0.87

Discovery through simulating Mean velocity profiles x/c=0.2-0.5

NACA0018, Re=10⁵, AOA=5

0.020

KAUST

A-airfoil, Re= $2.1x10^6$, AOA=13.3

Symbols: Expts of Mary & Sagaut (2002)

Mean velocity profiles

A-airfoil, Re= $2.1x10^6$, AOA=13.3

Reynolds stress

Conclusion

Is unsteady separation important in other canonical flows?

- Cylinder flow:
 - Interactions between unsteady separations, turbulence transition
- Grooved cylinder flow
 - Interaction between unsteady separations, no turbulence transition on surface
- Rotating cylinder flow
 - One unsteady separation, no turbulence transition on surface
- Unsteady separation is a dominant mechanism in cylinder-type flows.
- Drag crisis observed for SC, GC, RC: turbulent transition plays a role only in SC

Progress in flows past airfoils

Preliminary results indicate WMLES can handle separation effectively

Thank you

- Acknowledgement
 - KAUST Office of Competitive Research Funds under Award Number URF/1/1394-1 and Baseline Research Funds
 - KAUST Supercomputing Laboratory for time on Shaheen I (IBM BGP) and Shaheen II (Cray XC-40) (10s of millions of cpu hours)

Smooth cylinder	Grooved cylinder	Rotating cylinder
40M	35M	30M

Questions?

